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RNA Binding Protein as an Emerging Therapeutic 
Target for Cancer Prevention and Treatment

Review
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After transcription, RNAs are always associated with RNA binding proteins (RBPs) to perform biological activities. RBPs can interact with 
target RNAs in sequence- and structure-dependent manner through their unique RNA binding domains. In development and progression 
of carcinogenesis, RBPs are aberrantly dysregulated in many human cancers with various mechanisms, such as genetic alteration, epigenetic 
change, noncoding RNA-mediated regulation, and post-translational modifications. Upon deregulation in cancers, RBPs influence every 
step in the development and progression of cancer, including sustained cell proliferation, evasion of apoptosis, avoiding immune 
surveillance, inducing angiogenesis, and activating metastasis. To develop therapeutic strategies targeting RBPs, RNA interference-based 
oligonucleotides or small molecule inhibitors have been screened based on reduced RBP-RNA interaction and changed level of target 
RNAs. Identification of binding RNAs with high-throughput techniques and integral analysis of multiple datasets will help us develop 
new therapeutic drugs or prognostic biomarkers for human cancers.
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INTRODUCTION

After RNA is transcribed from genome, it is not present by itself 

in the cell. Many proteins interact with the transcribed RNAs to 

make huge complex, called ribonucleoproteins (RNPs). To form 

RNPs, RNA binding proteins (RBPs) participate as critical regu-

lators for RNA metabolism. RBPs can modulate the fate of binding 

RNAs by regulating transcription, editing, splicing, polyadeny-

lation, translocation, and turnover.1 RBPs can also function as 

scaffold proteins for recruiting many factors and enzymes to 

modify their binding partners. By making different complexes 

with various combinations, RBPs can fine-tune target RNAs in a 

time- or space-specific manner. For exact work, RBPs are regulated 

by post-translational modifications (PTMs) such as acetylation, 

ubiquitination, and phosphorylation. For example, Src-asso-

ciated protein in mitosis of 68 kDa (SAM68) is phosphorylated at 

tyrosine residue to mediate RNA binding activity and signal 

transduction.2

Mammalian cells contain hundreds of genes encoding RBPs 

that are evolutionally conserved and are transcribed into 

thousands of splicing variants to make RBPs. Until now, over 

1,500 RBPs have been identified through high-throughput scre-

ening and are validated as members of a unique database.3,4 Due 

to large number of RBPs, they perform various functions to 

maintain the homeostasis of cellular physiology. RBPs can 

interact with cognate RNAs in sequence-dependent or 

structure-specific manner using RNA-binding domains (RBDs) 

containing 60-100 amino acids. RBPs can combine with different 

RBDs to provide specificity and affinity for binding partners (Fig. 

1). However, half of known RBPs interact with RNA in the absence 

of specific motifs or structures.5 They may interact with RNA 

through concentration levels, affinity distribution, or synergistic 

binding with other effectors. More than 40 RBDs have been 

reported to be able to orchestrate the role of RBPs, through RNA 
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Figure 1. Schematic diagram for various RNA binding domains of RNA binding proteins (RBPs). RBP interacts with target mRNAs using unique
RNA binding domain (RBD) or a combination of different RBDs. Depending on RBDs, each RBP has specificity and affinity for its target RNAs. 
Each domain is schematically depicted with different shapes and colors. Each RBP is presented depending on its size. dsRBM, double-stranded
RNA binding motiff; hnRNP, heterogeneous nuclear ribonucleoprotein; RRM, RNA recognition motif; KH, K-homology; ZF-ZZ, zinc finger binding
with two zinc ions; ZF-CCCH, zinc finger C-x8-C-x5-C-x3-H type; PKR, protein kinase R; hnRNPA1, heterogeneous ribonucleoprotein A1; HuR, 
Hu-antigen R; U2AF35, U2 small nuclear RNA auxiliary factor 35; SAM68, Src-associated protein in mitosis of 68 kDa; TTP, tristetraprolin; 
IGF2BPs, Insulin-like growth factor 2 mRNA-binding proteins; CPEB4, cytoplasmic polyadenylation element binding protein 4; AA, amino acids.

recognition motif (RRM), K-homology (KH) domain, 

double-stranded RNA binding motif (dsRBM), Zinc finger (ZF) 

domain, and Piwi/Argonaute/ Zwille (PAZ) domain.6 RBPs have 

been classified into different family members depending on 

compositions of RBD. 

ABERRANT EXPRESSION OF 
RNA BINDING PROTEINS IN CANCERS

Many reports have suggested that deregulated expression of 

RBP is detected in various human diseases including cancer.7-9 

Altered expression of RBP causes wrong interactions with target 

RNAs to form incorrect RNP complex due to different affinity or 

concentration change. Such RNPs can affect the every post-tran-

scriptional events in affected cells and modulate cell phenotype 

into pathological conditions. Neurodegenerative diseases are 

main representative pathological conditions caused by defected 

RBPs due to high expression of RBP in the brain.8,10 Loss of RBP or 

expression of toxic RNA is involved in the development of many 

neurological disorders, including fragile X syndrome, paraneo-

plastic neurologic syndrome, and spinal muscular atrophy. 

Based on genome-wide analysis, many RBPs have been 

identified as key players in development and progression of 

cancers. They can dramatically change cell growth and proli-

feration.11-14 Aberrant expression of RBPs is also highly associated 

with survival rate of cancer patients.11,15 Unexpectedly, expression 

levels in fold change of validated RBPs are very low in cancers.16 

Although expression levels of RBPs are not changed much in 

cancer cells, they can affect characteristics of cancer cells by 

targeting many target RNAs. Deregulation of RBPs in cancer is 

mainly induced by genomic alterations, epigenetic mechanism, 

noncoding RNA-mediated regulation, and PTMs.17,18

Although genomic alterations are hallmarks of human cancer, 

mutations and copy number variations have been found in only 

15.2% of all RBPs.19 Due to alterations of RBPs, cancer cells can 

acquire differential splicing events, thus affecting various cancer 

hallmarks. Somatic mutations in spliceosome genes, such as 

serine arginine, SF3B1, U2AF1, and heterogeneous nuclear RNPs 

(hnRNPs) have been found in over 50% of myelodysplastic 

syndrome and acute myeloma leukemia patients.20,21 However, 

small change in one RBP can also affect global gene expression to 

modulate the growth of cancers. For example, germline mutation 

of DICER1 gene has resulted in defect in processing of precursor 

microRNA (miRNA) followed by abnormal expression of target 

RNAs.22,23 DICER1 defects are mainly found in patients of pleuro-

pulmonary blastoma, cystic nephroma, cervical embryonal 

rhabdomyosarcoma, multinodular goiter, and Sertoli-Leydig cell 

tumors. Chromosomal translocation of the region containing RBP 

can also generate mutation. Fusion protein induced by rearr-

angement promotes transformation and progression of cancer 
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Table 1. Role of aberrantly deregulated RBPs in human cancers

Cancer Hallmark RBP Target mRNAs Cancer types Reference number

Sustained proliferation ESRP1/2 CCND1, CDH1, CDKN1A, MYC, PKM2, Colon 28, 29
IGF2BP3 MYC, CDK6 Leukemia 30
LIN28A/B BMP4, HER2, HMGA1 Breast, ovary, liver, colon 31, 32
QKI CDKN1B, FOS, miR-20a, NUMB Brain, colon, lung 33, 34
HuR CCNA2, CCNB1 Gastric, breast 35, 36
SAM68 CD44, CCND1 Prostate, breast 37, 38

Evading apoptosis hnRNPH MADD, RON Brain 39
LARP4B BCL2, BIK, BAX, XIAP Brain 40, 41
eIF4E BCL2, BCL-XL Lymphoma 42
TIA1/TIAR GADD45A, FAS, PDCD4 Multiple 43, 44
CELF1 BAD, BAX, JunD Oral 45

Inducing angiogenesis RBP2 CDKI Gastric 46
HuR VEGF, HIF-1, THBS1 Breast, brain 47, 48
LARP6 VEGF Breast 49
eIF4E VEGF, FGF-2, PDGF Multiple 50, 51

Activating EMT and metastasis IGF2BPs CD164, PDPN, CD44, IGF2, MMP9 Breast, colon, leukemia 52-54
hnRNPE1 DAB2, ILE1 Breast, ovary 27
UNR/CSDE1 VIM, RAC1 Melanoma 13
RBM47 CUL3, DKK1, MDM4, MXI1, SLK Breast, lung 55

Avoiding immune surveillance IGF2BP3 ULPB2, MICB Leukemia 56
LIN28 Let-7 Leukemia 57, 58
FXR1 PRKCI, ECT2 Lung 59, 60

RBP, RNA binding protein; EMT, epithelial-mesenchymal transition; ESRP1/2, epithelial splicing regulatory protein 1 and 2; IGF2BP3, insulin-like 
growth factor 2 mRNA-binding protein 3; QKI, protein quaking; HuR, Hu antigen R; SAM68, Src-associated protein in mitosis of 68 kDa; 
LARP4B, La ribonucleoprotein domain family member 4B; eIF4E, eukaryotic initiation factor 4E; TIA1, T cell intracellular antigen 1; CELF1, 
CUGBP, elav-like family member 1; RBP2, retinol binding protein 2; UNR/CSDE1, upstream of N-Ras/Cold shock domain-containing protein 
E1; RBM47, RNA binding motif protein 47; FXR1, fragile X-related 1. 

through both RNA binding and activation domains of different 

proteins.24

Aberrant expression of RBPs can also be induced by post-tran-

scriptional mechanism through noncoding RNAs or other RBPs. 

Mature miR-328 interacts and sequesters PCBP4 and hnRNPK to 

enhance the expression of oncogenic activators such MYC and 

PIM1 in chronic myelogenous leukemia.25 Tumor suppressor 

miRNAs, such as miR-34a, miR-101, miR-128, and miR-138 can 

suppress the expression of Musashi-1 (MSI-1) through transla-

tional repression in glioblastoma and medulloblastoma.26 Long 3’ 

untranslated region (UTR) containing several AU- and U-rich 

sequences of MSI-1 can be recognized by another RBP, Hu antigen 

R (HuR), thus protecting it from degradation to maintain high 

expression in glioblastoma.27 In cancers, the function of RBPs can 

be deregulated by PTMs, including phosphorylation, methylation, 

acetylation, and ubiquitination.28 By covalent incorporation of 

functional groups or proteins, the activity of RBPs is dramatically 

changed in many cancers. TGF-/AKT2-dependent phosphory-

lation of hnRNPE1 can attenuate its suppressive activity on 

invasion and metastasis of breast cancer.29

ROLE OF RNA BINDING PROTEINS IN 
CANCER DEVELOPMENT

Because each RBP is associated with many target mRNAs and 

various biological processes, deregulation of RBP affects every 

step of cancer development, such as sustained cell proliferation, 

evasion of apoptosis, avoiding immune surveillance, inducing 

angiogenesis, and activating metastasis.17 Representative roles of 

RBPs in cancer development are summarized in Table 113,27-60 

depending on hallmarks of cancer.

The main function of RBPs in cancer development is sustaining 

cell proliferation through suppressing or enhancing expression 

levels of negative or positive regulators, respectively. SAM68 

regulates gene expression at post-transcriptional level through 

alternative splicing of pre-mRNAs. Overexpression of SAM68 has 

been identified in many human cancers. It modulates alternative 

splicing of oncogenic genes.11,39,40 For example, RAS/ERK-me-

diated phosphorylation of SAM68 promotes splicing of v5 exon of 

CD44 mRNA and stimulates cell proliferation.61 SAM68 also 

mediates alternative splicing of cyclin D1 into D1b isoform by 

recruiting spliceosomal component in prostate cancer.40 D1b 
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isoform of cyclin D1 has higher oncogenic activity compared to 

D1a isoform. L1TD1, another RBP, can interact with LIN28 RNA 

and stabilize it to regulate the translation of OCT4.62 Upregulated 

OCT4 positively regulates self-renewal and proliferation of 

cancer cells. Insulin-like growth factor 2 mRNA-binding protein 3 

(IGF2BP3) interacts with 3’UTR of MYC and CDK6 mRNAs and 

stabilizes their transcripts to promote cell growth in B-acute 

lymphoblastic leukemia.32 On the other hand, QKI protein is 

suppressed in glioblastomas and colorectal cancer to enhance 

cancer progression.35,36 QKI inhibits cell growth by stabilizing p27 

mRNA while degrading FOS mRNA.

Escaping apoptosis is one important mechanism to survive 

from extracellular stimuli and cytotoxic drugs in cancers. In this 

process, some RBPs play critical roles by regulating the expression 

of target mRNA at post-transcriptional level. Three-RRM con-

taining HuR protein is overexpressed in many human cancers. It 

is closely correlated with prognosis of these patients.49,63,64 HuR 

promotes cell growth by stabilizing many anti-apoptotic genes, 

such as SIRT1, p21, MDM2, PTMA, BCL2, and MCL1.65-67 

Eukaryotic initiation factor 4E (eIF4E) also regulates expression 

levels of proteins involved in cell survival, including BCL2 and 

BCL-XL.44 LARP member protein also regulates cell growth by 

promoting the expression of pro-survival genes such as BCL2, 

BIK, BAX, MDM2, and XIAP.42,43,68 CELF1 expression is increased 

in oral squamous cancer cells. It prevents programmed cell death 

and promotes cancer progression.47 This RBP interacts with 3’UTR 

of BAD, BAX, and JunD and destabilizes these pro-apoptotic 

genes. As a tumor suppressor gene, T cell intracellular antigen 1 

(TIA1) protein is decreased in human cancers. It promotes 

apoptosis by inducing alternative splicing of FAS mRNA or 

increasing the stability of PDCD4 and GADD45A.45,46

Cancer tissues require generation of new blood vessels to 

supply nutrients and overcome hypoxia condition. In this 

process, histone demethylase retinoblastoma binding protein 2 

(RBP2) can enhance the expression of VEGF through suppressing 

mRNA level of cyclin-dependent kinase inhibitor in gastric 

cancer.48 In triple negative breast cancer and brain tumor, HuR 

also modulates angiogenesis program by targeting multiple genes 

such as VEGF, hypoxia-inducible factor-1, and thromospondin 

1.49,50 For oncogenic activity of eIF4E, eIF4E controls the 

formation of blood vessel by targeting related genes, including 

VEGF, FGF-2, and platelet-derived growth factor.52,53,69

As a tumor promoter, RBP also enhances cancer progression by 

stimulating the invasion and metastasis. IGF2BPs are highly 

overexpressed in human cancers. It has been reported that they 

can stimulate the invasive activity of cancer cells through stabi-

lization of CD44, CD164, MMP9, and podoplanin mRNAs.54-56 

Their target mRNAs can facilitate the process of epithe-

lial-mesenchymal transition (EMT) and the formation of 

invadopodia to enhance the infiltration and degradation of 

extracellular matrix. It is known that hnRNPE1 can bind to the 

3’UTR of disabled-2 and interleukin-like EMT inducer mRNAs and 

mediate TGF--induced EMT and metastasis.29 UNR/CSDE1 can 

also promote the invasion and metastasis of melanoma by 

regulating VIM and RAC1 at post-transcriptional level.13 In 

contrast, RBM47 can suppress the metastasis of breast cancer by 

stabilizing transcripts of dickkopf WNT signaling pathway 

inhibitor 1.57

Recent report has suggested that evading immune surveillance 

is one important hallmark of cancer.70 IGF2BP3 induces immune 

escape by degrading ULPB2 and MICB, both of which are critical 

mediators in natural killer cells.58 Although there is no direct 

evidence for the involvement of LIN28 in immune surveillance of 

carcinogenesis, regulation of immune system by LIN28 suggests 

that this RBP is highly associated with cancer induction.59,60,71 

Recent study also suggests that fragile X-related 1 (FXR1) protein 

is overexpressed in lung squamous cell carcinoma and associated 

with poor prognosis.72 Aberrant expression of this RBP is nega-

tively correlated with cancer surveillance by forming complex 

with protein kinase C iota and epithelial cell transforming 2 

mRNAs.73

THERAPEUTIC APPROACH 
TARGETING RNA BINDING PROTEINS

Because deregulated RBP can affect many characteristics of 

cancer, it might be a good therapeutic target for cancer treatment. 

However, regulatory mechanism of RBP is mainly originated from 

stabilization or degradation of target mRNA, making it difficult to 

modulate its activity. There are several trials for regulating RBP’s 

activity as cancer therapy using RNA interference-based appro-

aches. Specific antisense oligonucleotide (ASO) against eIF4E can 

suppress tumor growth by repressing the translation of target 

mRNAs, such as VEGF, Survivin, c-Myc, Cyclin D1, and BCL-2.74-76 

Most importantly, intravenous injection of ASO can significantly 

inhibit tumor growth without showing any side effect in a mouse 

model. These data support clinical trials of using eIF4E-specific 

ASO against human cancers. In another study, treatment with 

folate or transferrin receptor-targeted liposomal nanoparticle-ba-

sed HuR siRNA can efficiently reduce cell viability, migration, and 

invasion of lung cancer.77,78 Conjugation of siRNAs against HuR 

with Cy3-labeled folic acid-coated DNA dendrimer nanocarrier 
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has shown dramatic anti-oncogenic activity in ovarian cancer.79

After screening natural products against MSI-1, one group has 

identified (−)-gossypol from cottonseed as a potent anti-tumor 

agent.80 This small molecule can suppress cell growth of colon 

and prostate cancers by directly interacting with RNA-binding 

pocket of MSI-1. Because HuR interacts with adenine- and 

uridine-rich elements in 3’UTR of target mRNAs, it will be good 

strategy to disrupt this interaction for cancer therapy. Wu et al.81 

has established a high-throughput screening system and iden-

tified several compounds as disruptors of HuR-mRNA interac-

tion. These chemicals can block HuR-mRNA binding at nano-

molar concentrations to inhibit the activity of HuR. Therefore, 

they can be used as cancer therapeutics for HuR-upregulated 

cancers. Interaction of LIN28 with Let-7 is also a therapeutic 

target for screening inhibitory chemicals using high-throughput 

system.82 With fluorescence resonance energy transfer-based 

assay, dissociation of RBP/RNA interaction can be used as a 

marker for screening novel drugs. 

Although many researchers have attempted to develop 

therapeutic strategies against RBPs, success is very limited due to 

difficulties in direct targeting of RBPs or in specific selection of 

interacting mRNAs. Alternatively, we can use downstream 

effectors of RBPs as therapeutic target. For example, MYC is a 

target of many RBPs. It reversely regulates the stability of many 

RBPs, such as Hu-antigen R (HuR), heterogeneous ribonu-

cleoprotein A1 (hnRNPA1), and hnRNPH to modulate cancer 

progression.83,84 Because MYC plays a pivotal role in many 

cancers, it will be a good approach to suppress the oncogenic 

activity of RBPs by targeting transcription or activity of MYC. As a 

first step, small molecule inhibitors, such as i-BET, JQ1, and 

MMS417 have been identified as transcriptional repressors of 

MYC. They can suppress cancer progression.85-87 MYC is also 

suppressed at post-transcriptional level by ASOs, thus decreasing 

its translation or splicing events.88,89 As alternative ways to block 

the activity of MYC, complex formation of MYC with its binding 

partners can be used as therapeutic target in cancer using mutant 

MYC or small molecule inhibitors.90-92

CONCLUSIONS

As mentioned above, RBPs play important roles in diverse 

biological processes. Many of them are found to be aberrantly 

dysregulated in various human cancers. Moreover, each RBP 

regulates a broad range of target mRNAs at the same time, thus 

leading to dramatic changes with important consequences for the 

development and progression of cancer. Nevertheless, expre-

ssion changes of RBPs are not as strong as other cancer-related 

genes based on genome-wide screening and bioinformatics 

analysis. This might be due to technical limitations for detecting 

small-scale changes of differential gene expression. We can 

overcome these bottlenecks using systems that are more 

sensitive for isolating novel cancer-related RBPs, such as next 

generation RNA sequencing and protein mass spectrometry.4,93 

As targets for cancer therapy, binding partners of RBPs are good 

candidates. Therefore, it is important to identify the direct target 

of each RBP in various cancer types. Recent progress in bioin-

formatics approaches and experimental techniques has improved 

our understanding of binding partners of RBPs involved in cancer 

progression. By introducing microarray and sequencing techni-

ques, more RNAs can be identified as binding partners of proteins 

in diverse samples.94 After immunoprecipitation with specific 

antibody, bound RNAs can be isolated followed by PCR and 

sequencing. To identify transient or weak interaction of RBP/RNA, 

crosslinking methodologies can be combined with sequencing 

techniques, such as crosslinking and immunoprecipitation (CLIP), 

photoactivatable-ribonucleoside-enhanced CLIP (PAR-CLIP), and 

individual-nucleotide resolution CLIP (iCLIP).95-97 Another new 

technique called targets of RBPs identified by editing (TRIBE) has 

been developed to capture cell specific target of RBPs without 

antibody using small amounts of RNA.98

To support large-scale analysis of genome-wide data, analysis 

software should be developed to combine various datasets 

acquired from different cancers with multiple platforms. Data 

from genetically modified animal models or other physiological 

cellular models such as patient-derived tumor xenograft, tissue 

organoid, and microfluidic culture system can help us under-

stand important functions of RBPs in human cancers. Then, 

identified RBPs or target mRNAs can be developed as therapeutic 

drugs for cancer therapy or are used as biomarkers for cancer 

progression or prognosis.
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